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Abstract
A method for studying isochronous oscillations in some systems of ODE
reducible to the equation ẍ + f (x)ẋ2 + g(x) = 0 is described. It is applied
to obtain the necessary and sufficient conditions for isochronicity of a cubic
two-dimensional autonomous system depending on six parameters. For all
isochronous systems in this family the Urabe function is explicitly constructed.

PACS numbers: 02.60.Lj, 02.70.−c, 45.10.−b
Mathematics Subject Classification: 34C25, 34C15

1. Introduction

Consider a planar autonomous analytic differential system of the form

ẋ = −y +
∞∑

i+j=2

aij x
iyj = −y + P(x, y), ẏ = x +

∞∑
i+j=2

bij x
iyj = x + Q(x, y). (1)

Conversion to polar coordinates shows that near the origin either all non-stationary trajectories
of (1) are ovals (in which case the origin is called a centre) or they are all spirals (in which
case the origin is called a focus). In this paper we will study only systems with a centre at
the origin. If all solutions near x = 0, y = 0 are periodic (that is, the origin is a centre), the
problem then arises to determine whether the period of oscillations is constant for all solutions
near the origin. A centre with such property is called isochronous. It follows from a result of
Poincaré and Lyapunov that the centre of (1) is isochronous if and only if it is linearizable,
that is, if there exists an analytic transformation X = x + o(|x, y|), Y = y + o(|x, y|) which
brings (1) into the linear system Ẋ = −Y, Ẏ = X.
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Although the study of isochronous oscillations goes back at least to Huygens who
investigated the motion of cycloidal pendulum, at present the problem is of renewed interest.
Starting from the 1960s of last century many studies have been devoted to the investigation
of the isochronicity and linearizability problems for various subfamilies of system (1).4 We
mention only very few contributions (for more references one can consult, e.g. [1, 5]). In
1964 Loud [11] classified isochronous centres of system (1) with P and Q being homogeneous
polynomials of degree 2, and in 1969 Pleshkan [13] found all isochronous centres at the origin
in family (1) where P and Q are homogeneous polynomials of degree 3. Sabatini [17], and
Christopher and Devlin [7] have obtained efficient criteria for isochronicity of the Liénard
system

ẋ = y, ẏ = −g(x) − f (x)y. (2)

In [7] the authors also have classified all isochronous polynomial systems (2) of degree 34 or
less.

The isochronicity problem and the properties of the period function of the Liénard type
system,

ẋ = y, ẏ = −g(x) − f (x)y2, (3)

were studied by Sabatini [18]. Let us denote

F(x) =
∫ x

0
f (s) ds, φ(x) =

∫ x

0
eF(s) ds. (4)

It was shown in [18] that (3) can be transformed into the system

u̇ = y, ẏ = −g(φ−1(u)) eF(φ−1(u)) (5)

by the substitution

u = φ(x). (6)

System (5) is a particular case of the system

ẋ = y, ẏ = −z(x). (7)

Denoting U(x) = ∫ x

0 z(s) ds we obtain the first integral in the form ‘kinetic energy + potential
energy’, that is, in the form

H(x, y) := y2

2
+ U(x) = E, (8)

where H(x, y) is the Hamiltonian of (7). The following criterion of isochronicity of (7) is due
to Urabe [20] (a simple proof of the criterion based on a formula from Landau and Lifshitz
[10, p 25] is obtained in [15]).

Theorem 1 (Urabe’s criterion). Assume xz(x) > 0 for x �= 0 on an interval (a, b) containing
the origin and z(0) = 0, z′(0) = 1. When z(x) is continuous on (a, b), the necessary and
sufficient condition that z(x) ∈ C1(a, b) and system (7) has an isochronous centre in the
origin, is that, in a neighbourhood of x = 0 by the transformation

1

2
ξ 2 =

∫ x

0
z(s) ds, (9)

where ξ/x > 0 for x �= 0, z(x) is expressed as

z(x) = z[x(ξ)] = ξ

1 + h(ξ)
, (10)

where h(ξ) is a continuous odd function.

4 An interesting direction of research is also the study of the quantum spectrum of isochronous potentials, see e.g.
[8] and the references therein
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We call the function h(ξ) defined in the theorem the Urabe function. For some properties and
the meaning of this function the reader can consult [8].

It was first observed in [6] that the transformation (6) along with theorem 1 yield a
method to compute the necessary conditions for isochronicity. In the present paper we
describe the method of [6] in detail and show that it can be used in order to obtain conditions
for isochronicity of some subfamilies of system (1), provided such subfamily depends on finite
number of parameters and can be transformed to (3). Namely, we apply it to computing the
conditions of isochronicity of the system

ẋ = −y + axy + bx2y

ẏ = x + a1x
2 + a3y

2 + a4x
3 + a6xy2,

(11)

which is the so-called time-reversible system, that is, a system invariant under reflection with
respect to a line passing through the origin and a change in the direction of time; due to this
property all solutions of (11) in a neighbourhood of the origin are periodic. In theorem 3,
which is the main result of the paper, we obtain the necessary and sufficient conditions for
the isochronicity of the centre at the origin of system (11). To prove the sufficiency of the
conditions we find explicitly the Urabe function h(ξ). The obtained conditions are equivalent
to those found by another method in [3, 14].

Usually in the studies of isochronicity problem for polynomial systems a variety of
methods should be applied in order to check isochronicity (for instance, in [14] the authors used
the Darboux method, commutativity and transformations preserving the period of oscillations
to prove isochronicity in different subfamilies of system (11)). However, unexpectedly we
found that in all cases of isochronicity of system (11) the Urabe function is of the form

h(ξ) = αξ/
√

β2 + γ ξ 2. (12)

We do not have an explanation of this fact. One possible hypothesis is that it is connected
to the polynomial form of system (11). So, an interesting open question is whether there are
systems (1) with polynomials on the right-hand side which can be reduced to (3) with the
Urabe function not of the form (12)?

In the appendix, as a complement to the classification of the cubic system presented in
[5], we give linearization transformations for few subfamilies of system (11).

2. An algorithm for computing conditions for isochronicity

Consider system (3):

ẋ = y, ẏ = −g(x) − f (x)y2,

where f (x) and g(x) are analytic functions. The following theorem proven in [6] is the starting
point of our work. It allows us to obtain an efficient algorithm for computing the necessary
conditions for isochronicity of the system of the form (3) in the case when the coefficient
of Taylor expansions of the functions f (x) and g(x) are polynomials of a finite number of
variables which are parameters of (3), that is, when the functions are of the form

f (x) =
∞∑

k=0

fk(α1, . . . , αn)x
k, g(x) = x +

∞∑
k=2

gk(α1, . . . , αn)x
k. (13)

Theorem 2 [6]. Let f and g be functions analytic in a neighbourhood of the origin and
xg(x) > 0 for x �= 0. Then system (3) has an isochronous centre at the origin if and only if

ξ

1 + h(ξ)
= g(x) eF(x), (14)
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where ξ is defined by

1

2
ξ 2 =

∫ x

0
g(s) e2F(s) ds, (15)

and h(ξ) is an odd function such that

φ(x) =
∫ x

0
eF(s) ds = ξ +

∫ ξ

0
h(t) dt (16)

and ξ

φ(x)
> 0 for x �= 0.

Let us suppose that system (3) has a centre at the origin. We will deduce from theorem 2
an infinite set of conditions for isochronicity of the centre (0, 0) in terms of the coefficients
of the Taylor expansion of the functions f and g. Let h be the function defined by theorem 2
and u = φ(x), where φ is given by (4). Denote the left-hand side of (14) by g̃(u),

g̃(u) = ξ

1 + h(ξ)
. (17)

If system (3) has a isochronous centre at the origin, then the function h must be odd,

h(ξ) =
∞∑
i=1

c2i−1ξ
2i−1. (18)

From (17) and (18), one can find the kth derivative of g̃(u),
dk g̃(u)

duk , by straightforward

differentiation, dg̃(u)

du
= dg̃(ξ)

dξ

dξ

du
, and, in general case

dkg̃(u)

duk
= d

dξ

(
dk−1g̃(u)

duk−1

)
dξ

du
. (19)

On the other hand,

g̃(u) = ξ

1 + h(ξ)
= g(x) eF(x).

Thus, we can also find dk g̃(u)

duk by differentiating the function g(x) eF(x) with respect to u.
Namely,

dg̃(u)

du
= eF(x(u))

(
g(x)

dF

dx
+

dg

dx

)
dx

du
. (20)

Since

dx

du
= e−F(x),

dF

dx
= f (x),

we obtain from (20)

dg̃(u)

du
= f (x)g(x) +

dg(x)

dx
.

By induction we see that

dkg̃(u)

duk
= e(1−k)F (x)S(x), (21)

where S(x) is a function of f (x), g(x) and their derivatives. Therefore, to compute the first
m conditions for isochronicity of system (3) we can use the following algorithm.
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• Fix h(ξ) = ∑m
i=1 c2i−1ξ

2i−1 + O(ξ 2m) and compute by (19) the kth derivative of g̃(u)

at 0,

vk := dkg̃(0)

duk
(22)

for k = 1, . . . , 2m + 1.
• By (21) compute

wk := dkg̃(0)

duk
(23)

for k = 1, . . . , 2m + 1.
• Eliminate from the system

v1 = w1, v2 = w2, . . . , v2m+1 = w2m+1, (24)

the variables c1, . . . , c2m−1 to obtain a system

s1 = s2 = · · · = sm = 0, (25)

which gives m necessary conditions for isochronicity of system (3).

Note that by increasing m we obtain, generally speaking, the infinite system of equations

s1 = s2 = s3 = · · · = 0. (26)

If all these conditions are fulfilled then the corresponding system (3) has the isochronous
centre at the origin. Any subset of (26) gives some necessary conditions for isochronicity of
the centre. Let us emphasize that to obtain conditions (26) we do not use any explicit form
of the Urabe function. We only assume its existence in the form of a series expansion with
undetermined coefficients.

If (13) holds then sk (k = 1, 2, . . .) are polynomials in α1, . . . , αn. Thus, in such a case,
by the Hilbert basis theorem (26) is equivalent to a system

s1 = s2 = s3 = · · · = sM = 0, (27)

M � 1. Unfortunately, neither Hilbert’s theorem nor its proof gives any idea to obtain the
number M appearing in (27). Thus we need some criteria to prove the equivalence of (26)
and (27), that is to prove that (27) provides not only the necessary, but also the sufficient
conditions for isochronicity. Two such criteria are given in the following section, and a simple
(but we hope rather general) approach is described at the end of section 3.

3. Some criteria for isochronicity of system (3)

Before passing to the study of system (11) we mention some criteria of isochronicity of
system (3).

Choosing special forms for the Urabe function one can obtain a number of criteria for
isochronicity of system (3). For example, the following criterion corresponds to the case
h(ξ) ≡ 0.

Criterion 1. Let f and g be functions analytic in a neighbourhood of the origin and xg(x) > 0
for x �= 0. If

g′(x) + g(x)f (x) = 1, (28)

then the origin is an isochronous centre of system (3).
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Proof. If (28) holds, then

eF(x) = eF(x)(g′(x) + g(x)f (x)) = d

dx
(g(x) eF(x)),

which implies that (g(x) eF(x))2 = ∫ x

0 2g(s) e2F(s) ds = ξ 2. Thus, (14) holds and h(ξ) ≡ 0.
By theorem 2, the centre at the origin is isochronous. �

Under the assumption that f (x) and g(x) are odd and of the class C1 this criterion was
obtained in [18]. The following statement corresponds to the case:

h(ξ) = k1ξ√
k2

2 + k3ξ 2
. (29)

Criterion 2. Assume that f (x) and g(x) are functions analytic in a neighbourhood of the
origin and xg(x) > 0 for x �= 0. If for some k1, k2, k3 ∈ R and k2

2 + k2
3 �= 0

g′(x) + g(x)f (x) = (1 − k1�(x))3 + k1k3�
3(x), (30)

where

G(x) = 2
∫ x

0
g(s) e2F(s) ds, �(x) = g(x) eF(x)√

k2
2 + k3G(x)

,

then (3) has the isochronous centre at the origin.

Proof. When (30) holds, we have

2g(x) e2F(x) = 2g(x) e2F(x)(g′(x) + g(x)f (x) − k1k3�
3(x))(1 − k1�(x))

(1 − k1�(x))4

= ((g(x) eF(x))2)′(1 − k1�(x))

(1 − k1�(x))4
− 2g(x) e2F(x)k1k3�

3(x)(1 − k1�(x))

(1 − k1�(x))4

= ((g(x) eF(x))2)′(1 − k1�(x))2 + (1 − k1�(x))((g(x) eF(x))2)′k1�(x)

(1 − k1�(x))4

− 2g(x) e2F(x)k1k3�
3(x)(1 − k1�(x))

(1 − k1�(x))4

= ((g(x) eF(x))2)′(1 − k1�(x))2 − ((1 − k1�(x))2)′(g(x) eF(x))2

(1 − k1�(x))4

=
(

(g(x) eF(x))2

(1 − k1�(x))2

)′
,

which implies that

ξ 2 =
∫ x

0
2g(s) e2F(s) ds = (g(x) eF(x))2

(1 − k1�(x))2
.

Then

ξ = g(x) eF(x)

1 − k1�(x)
= g(x) eF(x)

1 − k1g(x) eF(x)√
k2

2 +k3G(x)

,

which means that (14) holds and h(ξ) is of the form (29). By theorem 2, the centre at the
origin is isochronous. �
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Obviously, criterion 1 is a particular case of criterion 2 where k1 = 0. Note also that
criterion 2 can be derived from corollaries 2–7 of [6].

Example. To show how criterion 2 can be applied for studying isochronicity we consider the
system

ẋ = y, ẏ = −x(1 − x) − 5y2

4(1 − x)
. (31)

For (31), the function G(x) defined in criterion 2 is

G(x) = −2

(
4 +

2(x − 2)√
1 − x

)
.

Note that the coefficients k1, k2, k3 in (29) are not uniquely defined, in fact, we have
here a one-parametric family of the coefficients. Since the condition given by criterion 1
is not satisfied for (31) we can choose k1 = 1. Setting now in equation (30) x = −3, x = −8,

x = −15 (we have chosen these points in order to have simple expressions for G(x) after
evaluations) we obtain the system of three equations in two variables k2 and k3. Resolving it
we find that k2

2 = 16 and k3 = 1. After some work for simplification of the expressions on the
right-hand side of (30), we see that in a neighbourhood of the origin (30) is the identity when
k1 = k3 = 1, k2 = 4. Therefore, due to criterion 2 the centre at the origin of system (31) is
isochronous and

h(ξ) = ξ√
16 + ξ 2

(32)

is the Urabe function of the system.
Another way to see the isochronicity of the centre is the direct check that (32) is the Urabe

function as follows. For system (31)

F(x) =
∫ x

0
f (s) ds = −5

4
ln(1 − x), g(x) eF(x) = x(1 − x)−

1
4

and

ξ 2 = 2
∫ x

0
g(s) e2F(s) ds = 2

∫ x

0
s(1 − s)−

3
2 ds = 4

[
1 − (1 − x)

1
2
]2

(1 − x)−
1
2 .

Thus,

ξ = 2
[
1 − (1 − x)

1
2
]
(1 − x)−

1
4 ,

√
16 + ξ 2 = 2(1 − x)

1
4 + 2(1 − x)−

1
4 ,

which imply that for h(ξ) defined by (32)

ξ

1 + h(ξ)
= ξ

√
16 + ξ 2√

16 + ξ 2 + ξ
= 4

[
1 − (1 − x)

1
2
][

1 + (1 − x)−
1
2
]

2(1 − x)
1
4 + 2

[
2 − (1 − x)

1
2
]
(1 − x)−

1
4

= x(1 − x)−
1
4 = g(x) eF(x).

By theorem 2, the centre at the origin is isochronous.

4. Isochronicity of system (11)

We now demonstrate how the algorithm described in section 2 can be used in order to
study the isochronicity problem for polynomial systems reducible to (3). Consider the cubic
system (11):

ẋ = −y + axy + bx2y

ẏ = x + a1x
2 + a3y

2 + a4x
3 + a6xy2.
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Differentiating the both sides of the first equation of (11) we see that system is equivalent
to (3) with

f (x) = a + a3 + (2b + a6)x

1 − ax − bx2
, g(x) = (x + a1x

2 + a4x
3)(1 − ax − bx2).

Note, that f (x) and g(x) are functions with the property (13).

Theorem 3. System (11) has an isochronous centre at the origin if and only if

b = (−a2 + aa1 − 10a2
1 + 5aa3 − 10a1a3 − 4a2

3 + 9a4 + 3a6
)/

3

and one of the following conditions holds:

(1) a1 + 1/2a3 − 1/2a = a3a4 − 1/6a3a6 − 3a4a + 1/6a6a = a2
3 − 3a3a + 2a2 − 6a4 − 4/3a6

= a3a6a + 6a4a
2 − a6a

2 − 18a2
4 − a4a6 + 2

/
3a2

6 = a2
4a

2 + 1/6a4a6a
2 − 3a3

4 + 1
/

3a2
4a6

+ 5
/

36a4a
2
6 − 1

/
54a3

6 = 0,

(2) a6 = a4 = a3 − 1/4a = a1 = 0,
(3) a6 = 4a3 − 3a = a1 + a = a2 − 3a4 = 0,

(4) a6 = a3 − 2a = a1 + 2a = a2 − a4 = 0,

(5) a6 = a3 − 1/3a = a1 + 2/3a = a2 − 9/2a4 = 0,
(6) a4 = a1 + 1/2a3 − 1/2a = a2

3 − 3a3a + 2a2 − a6 = 0,

(7) a4 = 2a3 − a = 2a1 + a = 0,

(8) a4 = a3 − a = a1 = 0,

(9) a4 = a3 = a1 = a2 − 9a6 = 0.

Proof. To obtain the necessary conditions for isochronicity we use the algorithm of section 2
with m = 6. To perform the first step of the algorithm we take

h(ξ) =
6∑

i=1

c2i−1ξ
2i−1 + O(ξ 13) = dξ + eξ 3 + cξ 5 + kξ 7 + tξ 9 + vξ 11 + O(ξ 13). (33)

Computation of the derivatives by (19) yields

v1 = 1, v2 = −3d, v3 = −15d2, v4 = −30e − 105d3,

v5 = 630ed + 945d4, v6 = −840c − 11 340ed2 − 10 395d5,

v7 = 30 240cd + 207 900d3e + 11 340 e2 + 135 135d6,

v8 = −45 360k − 831 600d2c − 623 700d e2 − 4054 050d4e − 2027 025d7,

v9 = 21 621 600cd3 + 34 459 425d8 + 1663 200ce + 85 135 050d5e + 24 324 300d2 e2

+ 2494 800dk,

v10 = −567 567 000cd4 − 654 729 075d9 − 129 729 600cde − 1929 727 800d6e

− 851 350 500d3 e2 − 16 216 200 e3 − 97 297 200d2k − 3991 680t,

v11 = 86 486 400c2 + 15 437 822 400cd5 + 13 749 310 575d10 + 6810 804 000cd2e

+ 47 140 493 400d7e + 28 945 917 000d4 e2 + 1702 701 000d e3

+ 3405 402 000d3k + 194 594 400ek + 311 351 040 dt,

v12 = −9081 072 000c2d − 439 977 938 400cd6 − 316 234 143 225d11

− 308 756 448 000cd3e − 1237 437 951 750d8e − 6810 804 000c e2

− 989 950 361 400d5 e2 − 115 783 668 000d2 e3 − 115 783 668 000d4k

− 20 432 412 000dek − 16 345 929 600d2t − 518 918 400v,
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v13 = 617 512 896 000c2d2 + 13 199 338 152 000cd7 + 7905 853 580 625d12

+ 13 199 338 152 000cd4e + 34 785 755 754 750d9e + 926 269 344 000cd e2

+ 34 648 262 649 000d6 e2 + 6599 669 076 000d3 e3 + 57 891 834 000 e4

+ 27 243 216 000ck + 3959 801 445 600d5k + 1389 404 016 000d2ek

+ 741 015 475 200d3t + 32 691 859 200et + 54 486 432 000dv.

Performing the second step of the algorithm we find

w1 = 1, w2 = −a + 2a1 + a3,

w3 = −2b − 6a1a + 6a4 + (−2a + 2a1)(a3 + a) + 2a6 + 2a2 + 2a3a

− (−a + 2a1 + a3)(a3 + a),

w4 = −16a1b − 36a4a − 2a3a
2 + 4a3b − 5a6a − a3 + 8ba + 12a1aa3 + a2

3a + 4a1a6

+ 14a1a
2 − 2a1a

2
3 − 7a6a3 − 12a4a3 + 2a3

3,

w5 = a4 − 30a3a1 + 5a3a3 − 70a2a1a3 + 5a2a2
3 − 30aa1a

2
3 − 5aa3

3 + 10a1a
3
3 − 6a4

3

+ 150a2a4 + 180aa3a4 + 30a2
3a4 + 9a2a6 − 10aa1a6 + 34aa3a6 − 30a1a3a6

+ 29a2
3a6 − 8a2

6 − 22a2b + 120aa1b − 40aa3b + 80a1a3b − 10a2
3b − 120a4b

− 8a6b + 16b2,

w6 = 138a1a6a3a + 62a1a
4 − 1080a1ba3a + 63aa2

6 − 25a2
3a

3 − 46a1a
2
6 + 208a1a6a

2
3

− 400a1ba2
3 + 90a1a

3
3a + 92a3a6b + 350a1a

2
3a

2 + 200a2
3ab − 220a6a

2
3a

− 100a6a3a
2 − 900a4a

2
3a − 30a4a6a3 + 1080a4a3b + 270a1a

3a3 + 150a4aa6

+ 44a1ba6 − 1350a4a
2a3 − 584a1ba2 + 28a6ab + 198a3a

2b − 22a1a
2a6

+ 1440a4ab + 24a5
3 − 15a3

3a
2 − 136ab2 − 9a3a

4 − 144a3b
2 − 14a6a

3

+ 52a3b + 272a1b
2 − 540a4a

3 + 30ba3
3 − 52a1a

4
3 + 26aa4

3 + 97a3a
2
6 − a5

− 90a4a
3
3 − 146a6a

3
3 .

We have also computed the polynomials w7, . . . , w13, but the expressions for these polynomials
are too long. We do not present them here, however the interesting reader can easily compute
them by (21) using any available computer algebra system.

Passing to the third step of the algorithm we eliminate from the system v2 = w2, v3 =
w3, . . . , v13 = w13 the variables c1, . . . , c11, that is, in the current notation, d, e, c, k, t, v,
(note that any even equation v2k = w2k is linear with respect to c2k−1) and obtain

s1 = (
a2 − aa1 + 10a2

1 − 5aa3 + 10a1a3 + 4a2
3 − 9a4 − 3a6

)/
3 + b = 0,

s2 = −320a4
1 − 1040/3a3

1a3 + 96a2
1a

2
3 + 208a1a

3
3 + 224/3a4

3 − 112a3
1a − 136a2

1a3a

− 128a1a
2
3a − 104a3

3a − 8a2
1a

2 + 16a1a3a
2 + 32a2

3a
2 − 8/3a3a

3 + 752a2
1a4

+ 656a1a3a4 + 32a2
3a4 + 88a2

1a6 + 96a1a3a6 + 8a2
3a6 + 184a1a4a + 104a3a4a

− 8a1a6a − 8a3a6a + 8a4a
2 − 216a2

4 − 48a4a6,

and so on. Then, using the routine minAssChar of Singular [9] (which computes minimal
associate primes of a polynomial ideal using the characteristic sets method [21]) we find that
the variety of the ideal 〈s2, . . . , s6〉 consists of 11 components. To speed up computations we
performed them in the ring of characteristic 32 003. Then, using the reconstruction to rational
arithmetic we obtained nine conditions presented in the statement of the theorem, and the
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following two conditions:

a6 = a1 +
5

4
a3 +

1

4
a = a3a − 1

7
a2 − 20

7
a4 = a3 +

35

2
a3a4 − 9

2
a4a

= a2
3 +

101

59
a3a − 6

59
a2 − 67

101
a4 = 0 (34)

and

a4 = a1 +
8

7
a3 +

1

7
a = a3a − 13

8
a2 +

49

2
a6 = a3 − 32

3
a3a6 − 44

3
a6a

= a2
3 +

11

69
a3a − 169

88
a2 +

53

144
a6 = 0. (35)

Although the computations in modular arithmetic are very efficient they do not guarantee
the correct result. In order to check the correctness of the obtained conditions we took the
first two polynomial from each of the obtained series conditions, set them equal to zero and
recompute with minAssChar of singular in the ring of characteristic zero (that is, for example,
for the component defined by (35) we recomputed the minimal associate primes after the
substitution a4 = 0, a1 = −8/7a3 − 1/7a). The recalculations yield the same conditions as
in the statement of the theorem, but instead of (34) and (35) we obtain

a6 = 4a1 + 5a3 + a = a3a + a2
3 − 4a4 = a2 − 2aa3 + 5a2

3

= 2a3
3 + aa4 − 3a3a4 = 0 (36)

and

a4 = 7a1 + 8a3 + a = 11a3a − 52a2
3 − 49a6 = 48a3 + 11aa6 + 8a6a3

= 11a2 − 32a2
3 − 196a6 = 0. (37)

It is easy to see that the only real solution for each of systems (36) and (37) is a = a1 = a3 =
a4 = a6 = 0, so we should not take into account these conditions.

We now have to show that any system from components (1)–(9) defined in the statement
of the theorem has the isochronous centre at the origin, in other words, that conditions (1)–(9)
of theorem 3 are not only the necessary, but also the sufficient conditions for isochronicity of
system (11). For case (2), the corresponding system of the form (3) is

ẋ = y, ẏ = −x(1 − ax) − 5ay2

4(1 − ax)
. (38)

If a = 0 then the system is linear, otherwise, after the transformation

x 	→ x/a, y 	→ y/a, (39)

we obtain system (31) of the example of section 3. It is proven in section 3 that the centre at
the origin of (31) is isochronous.

Simple calculations also show that (30) holds with k1 = 0 for cases (1), (6) and (8),
with k1 = a, k2 = 2, k3 = a2 + 4a6 for case (7). In the remaining cases we rescale the
phase plane coordinates using (39) and then for the obtained systems (30) is fulfilled with
k1 = 3, k2 = 4, k3 = 9 for case (3), with k1 = |k2| �= 0, k3 = 0 for case (4), with
k1 = 2, k2 = 3, k3 = 4 for case (5) and with k1 = 1, k2 = 3, k3 = 1 for case (9). In all cases
the corresponding functions (29) are the Urabe functions of these systems. �

Remark 1. To understand why in all isochronicity cases for system (11) the Urabe function
can be chosen in the form (29) is an open problem.
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Remark 2. As we have already mentioned in the introduction, the conditions of isochronicity
given by theorem 3 are equivalent to those obtained in [3, 14]. Our approach based on theorem 2
is completely different from those of [3] and [14]. As we mentioned above, although we
performed the calculations with singular in the field of the characteristic 32 003, after the
rational reconstruction we obtained conditions (1)–(9) of theorem 3 which coincide with the
conditions of [3] and [14].

The proof of the sufficiency of the conditions for isochronicity given above is very short,
however it works only in the case when the Urabe function is of the form (29). We now
present the way which we originally used in order to find the Urabe functions for all the cases
of theorem 3. It appears that this approach can also be useful in the cases when the Urabe
function is not of the form (29).

Consider again the second case of theorem 3, that is system (38). In the proof of theorem 3
we have computed the polynomials vi and wi . From (24) we now find that for
system (31) the coefficients of the expansion (33) are

d = a

4
, e = − a3

128
, c = 3a5

8192
, k = − 5a7

262 144
,

t = 35a9

33 554 432
, v = − 63a11

1073 741 824
.

Let v0 = d, v1 = e, v2 = c and so on. We see that for the terms of this sequence

vk+1

vk

= − (2k + 1)a2

32(k + 1)
= −a2

16

(k + 1/2)(k + 1)

(k + 1)2
. (40)

Thus, we guess that (40) is the so-called hypergeometric sequence, and if so, then, using the
algorithm from [12, p 36] (which, actually, follows from the definition of hypergeometric
functions), we conclude

2F1

[
1/2 1
1

; −a2x

16

]
= 1 +

∑
k�1

(2k − 1)!! · k!

2k · k!
· (−a2x/16)k

k!
= 4√

16 + a2x
.

Since
4√

16 + a2x
= 1 − a2x

32
+

3a4x2

2048
− 5a6x3

65 536
+ · · · ,

we obtain
ax√

16 + a2x2
= ax

4

4√
16 + a2x2

= ax

4
− a3x3

128
+

3a5x5

8192
− 5a7x7

262 144
+ · · · .

Thus, we guess for the second case of theorem 3 that the Urabe function is

h(ξ) = aξ√
16 + a2ξ 2

.

In the case a = 1 the latter function is the function (32).
Similarly, one can find the Urabe function in the form (29) for all other cases of

theorem 3.
To finish our study of system (11) we mention the connection of families (1)–(9) of

theorem 3 to some known isochronous potentials. For components (1), (6) and (8) of the
theorem h(ξ) ≡ 0. Therefore, substitution (6) reduces systems from (1), (6) and (8) to the
harmonic oscillator.

The function h(ξ) = ξ leads to Urabe’s potential

U(x) = 1 + x −
√

1 + 2x, (41)
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where −1/2 < x < 3/2, i.e. the potential is an analytic function defined on a finite segment
of real axis. Substitution (6) brings systems from component (3) to systems of the form (7)
with the potential (41).

The remaining cases arisen in our study of system (11) correspond to the function h(ξ)

of the form (29) with k1k2k3 �= 0. We can rewrite such functions as h(ξ) = c1ξ/
√

1 + c2ξ 2.
The rescaling ξβ = ζ , where

β = c2/c1 = k3/(k1k2), (42)

yields h(ζ ) = αζ/
√

1 + αζ 2. It is shown in [8] that the latter function gives rise to the potential

U(α, x) = 1

2

(
x + 1 − √

αx(x + 2) + 1

1 − α

)2

(43)

studied in [2]. Using the scaling properties of h(ξ) and the corresponding potentials [8,
p 6187] we obtain from (43) the two-parameter family of isochronous potentials presented for
the first time by Stillinger and Stillinger [8, 19]:

U(α, β, x) = 1

2

(
βx + 1 − √

αβx(βx + 2) + 1

1 − α

)2

. (44)

In the limit α → 1 (44) yields the isotonic potential

U(β, x) = 1

8β2

(
βx + 1 − 1

βx + 1

)2

.

In terms of the constants k1, k2, k3 of the function (29) we rewrite the latter potential as

U(k1, k2, k3, x) = 1

8

(
k1k2

k3

)2 (
1 +

k3x

k1k2
− k1k2

k1k2 + k3x

)2

.

Thus substitution (6) reduces systems from components (2), (3), (5), (7) and (9) to the isotonic
potential. For example, for system (31) (which is a system from component (2) of theorem 3)
the values of the parameters ki are k1 = 1, k2 = 4, k3 = 1; thus the corresponding potential
appearing in the Hamiltonian (8) is

U(u) = u2(8 + u)2

8(4 + u)2 .

5. Final remarks

We have described in detail a new method (derived from Urabe’s criterion) to compute the
necessary conditions for isochronicity of periodic solutions within finite-parametric families
of system (1) (provided such families can be transformed to the Liénard-type system (3). We
have applied it to study the isochronicity of system (11) and have found all isochronous systems
in this family. We have obtained the explicit expressions for the Urabe functions for all these
isochronous systems, which in all cases are functions of the form (29). An interesting open
question naturally arises in this connection whether there are polynomial systems reducible
to (3) with the Urabe function different from (29).

In fact the study of the isochronicity problem for parametric families of ODEs consists
of two parts: one is a difficult computational problem (as we have seen above) to find
the necessary conditions for isochronicity, and then the problem arises to prove that the
obtained conditions are also the sufficient conditions for isochronicity. No general methods
to treat this second problem are known. The three main (but not universal) methods are the
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construction of Darboux linearization, the construction of an orthogonal commuting system
and the direct computation of the period function in the polar coordinates. In this paper, we
have demonstrated for the first time that the Urabe criterion also is a very efficient method to
check isochronicity of some parametric families of systems of ODEs.

Note also, that despite the fact that the proof of theorem 3 looks rather simple, in fact it
requires tremendous computational work: we have to find the decomposition of the solution
of the polynomial system s2 = s3 = · · · = s6 = 0, where the polynomials s2, . . . , s6 have
26, 79, 174, 335 and 587 terms, respectively. We are able to carry out this work just because
we have used one of the most modern and efficient softwares available for such purposes (the
routines of Singular [9]) and the trick with the modular arithmetics.

As a byproduct of our study and as a complement to the classification of polynomial
systems presented in [5] in the appendix we give linearizing substitutions for two isochronous
families of (11).
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Appendix

In recent years the isochronicity problem for the cubic system

ẋ = −y +
3∑

i+j=2

aij x
iyj , ẏ = x +

3∑
i+j=2

bij x
iyj (A.1)

has been tackled by many authors (see e.g. [4, 5, 16] and references therein). In polar
coordinates x = r cos θ, y = r sin θ we can write reversible systems (A.1) as

ṙ = r2(R3 sin 3θ + R1 sin θ) + r3(R4 sin 4θ + R2 sin 2θ),

θ̇ = 1 + r(R3 cos 3θ + r1 cos θ) + r2(R4 cos 4θ + R2 cos 2θ + r0).
(A.2)

The classification presented in [4] is for the case R3 = 0. Note that for system (11)

R3 = (a1 − a3 + a)/4, (A.3)

thus this class is different from the one studied in [4].
We have observed that some systems from theorem 3 are systems from the classification

given in [5]. Namely, they are the systems from components (5), (7) and (8) of theorem 3 (for
all these cases R3 = 0).

For case (5), the corresponding differential system is linear or after the rescaling of x and
y can be written as

ẋ = −y + xy − 2
9x2y, ẏ = x − 2

3x2 + 1
3y2 + 2

9x3. (A.4)

This is the system CR5 given on page 41 in [5].
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System (A.4) can be linearized, that is, can be brought to the linear system Ẋ = −Y, Ẏ =
X by the transformation

X = (3 − x)(9x − 6x2 + 2x3 − 6y2 + 2xy2)

3(2x − 3)2
, Y = 3y(3 − x)

(2x − 3)2
. (A.5)

Systems from the component (7) are of the form

ẋ = −y + axy + a6x
2y, ẏ = x − 1

2ax2 + 1
2ay2 + a6xy2. (A.6)

This is the system CR1 of [5, p 38]. After the substitution

u = x + iy, v = x − iy, (A.7)

system (A.6) is written in the complex form as

u̇ = u − a

2
u2 − a6

4
u3 +

a6

4
uv2, v̇ = −v +

a

2
v2 − a6

4
u2v +

a6

4
v3. (A.8)

The latter system is case VIII in [16], where the linearizing transformation is given. For
a6 �= −a2/4 the linearization is

u1 = u	
α1
1 	

α2
2 	

α3
3 , v1 = v	

α′
1

1 	
α′

2
2 	

α′
3

3 ,

where

	1 = 1 − a +
√

a2 + 4a6

4
u − a −

√
a2 + 4a6

4
v,

	2 = 1 − a +
√

a2 + 4a6

4
u − a +

√
a2 + 4a6

4
v,

	3 = 1 − a −
√

a2 + 4a6

4
u − a −

√
a2 + 4a6

4
v,

and

α1 = − a√
a2 + 4a6

, α2 = a −
√

a2 + 4a6

2
√

a2 + 4a6

, α3 = α2,

α′
1 = a√

a2 + 4a6

, α′
2 = −a +

√
a2 + 4a6

2
√

a2 + 4a6

, α′
3 = α′

2.

Reverting to the real variables x, y we obtain the linearization

X = Re u1(x + iy, x − iy), Y = Im u1(x + iy, x − iy). (A.9)

In the particular case when α1 is real we can write this substitution as

X = 1

2
(1 − ax − a6x

2)(−1−α1)/2

(
(x + iy)

(
1 − ax

2
+

iay

2α1

)α1

+ (x − iy)

(
1 − ax

2
− iay

2α1

)α1
)

,

Y = − i

2
(1 − ax − a6x

2)(−1−α1)/2

(
(x + iy)

(
1 − ax

2
+

iay

2α1

)α1

− (x − iy)

(
1 − ax

2
− iay

2α1

)α1
)

.

If a6 = −a2/4, then system (A.8) is linearized by the transformation

u1 = 4 e
a(−u+v)

−4+a(u+v) u

4 − a(u + v)
, v1 = 4 e

a(u−v)

−4+a(u+v) v

4 − a(u + v)
,
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and the change

X = 2
(
x cos

(
ay

ax−2

)
+ y sin

(
ay

ax−2

))
2 − ax

,

Y = 2
(
y cos

(
ay

ax−2

) − x sin
(

ay

ax−2

))
2 − ax

(A.10)

yields the linear system in the case of real system (A.6).
Note also that system of case (8) is the cubic reversible system CR2 of [5, p 38]. A

linearization is provided there.
For most of the systems of the classification in [5] the authors provide the linearizing

transformations; however for systems (A.4) and (A.6) such transformations are not presented.
Thus, linearizations (A.5), (A.9) and (A.10) are a complement to the classification of cubic
systems given in [5].
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